Refinement of the Crystal Structure of Lithium Polysilicate

By K.-F. Hesse
Mineralogisch-Petrographisches Institut der Universität Kiel, 2300 Kiel, Germany

(Received 26 October 1976; accepted 3 November 1976)

Abstract. Synthetic $\left(\mathrm{Li}_{2} \mathrm{SiO}_{3}\right)_{x}$, orthorhombic, $\mathrm{Cmc} 2_{1}$ $\left(C_{21}^{12}\right), a_{o}=9.392(2), b_{o}=5.397(2), c_{o}=4.660(1) \AA$; $D_{o}=2.54 \mathrm{~g} \mathrm{~cm}^{-3}, D_{c}=2.53 \mathrm{~g} \mathrm{~cm}^{-3}$ for $Z=4 ; R$ $($ unweighted $)=0.066, R$ (weighted) $=0.043 .\left[\mathrm{SiO}_{4}\right]$ tetrahedra form chains parallel to [001] with two tetrahedra in the identity period. Lithium is tetrahedrally coordinated, with a mean $\mathrm{Li}-\mathrm{O}$ distance of 2.00 Å.

Introduction. $\left(\mathrm{Li}_{2} \mathrm{SiO}_{3}\right)_{x}$ was prepared by melting a stoichiometric mixture of $\mathrm{Li}_{2} \mathrm{CO}_{3}$ and SiO_{2} at $1240^{\circ} \mathrm{C}$ and subsequent slow cooling in the furnace.

The density was determined by flotation in $\mathrm{CH}_{2} \mathrm{I}_{2}-$ $\mathrm{C}_{6} \mathrm{H}_{6}$ mixtures (Midgley, 1951). A needle $0.063 \times$ $0.075 \times 0.280 \mathrm{~mm}$ was used for data collection on an automatic Philips four-circle diffractometer with graphite-monochromatized Mo $K \alpha$ radiation $(\lambda=$ $0.7107 \AA$) and a $\theta-2 \theta$ scan $\left(\theta_{\max }=50^{\circ}\right)$. The intensities of 1459 crystallographically independent reflexions were measured; 275 of these had $\left|F_{o}\right|>3 \sigma\left(\left|F_{o}\right|\right)$, and these were used in the subsequent refinement. The standard deviation, $\sigma\left(F_{o}\right)$, was estimated by

$$
\sigma\left(F_{o}\right)=\frac{1}{2} \frac{k}{\sqrt{\mathrm{Lp}}}\left[\frac{N_{T}+N_{\mathrm{bg} 1}+N_{\mathrm{bg} 2}+\left(0 \cdot 01 N_{\mathrm{pk}}\right)^{2}}{N_{T}-N_{\mathrm{bg} 1}-N_{\mathrm{bg} 2}}\right]^{1 / 2}
$$

(Stout \& Jensen, 1968), where N_{T} is the total peak count and $N_{\text {bg } 1}$ and $N_{\mathrm{bg} 2}$ are the background counts on both sides of the peak. N_{pk} is defined by $N_{\mathrm{pk}}=N_{T}-$ $N_{\mathrm{bg} 1}-N_{\mathrm{bg} 2}$. No absorption correction was applied.

Table 3. Comparison of atomic distances in the cationoxygen polyhedra $\left[A-\mathrm{O}_{4}\right]$ of the isostructural compounds

	$\underset{\substack{\mathrm{Na}_{2} \mathrm{SiO}_{3} \\ \text { McDonald } \\(1967)}}{ }$	$\begin{gathered} \mathrm{Li}_{2} \mathrm{SiO}_{3} \\ \text { This } \\ \text { paper } \end{gathered}$	$\mathrm{Na}_{2} \mathrm{GeO}_{3}$ Völlenkle, Wittmann \& Nowotny (1971)	$\begin{gathered} \mathrm{Li}_{2} \mathrm{GeO}_{3} \\ \text { Völlenkle \& } \\ \text { Wittmann } \\ (1968) \end{gathered}$
$A-\mathrm{O}(2)$	$2 \cdot 40$ (1)	$2 \cdot 17$ (1)	$2 \cdot 35$ (1)	$2 \cdot 19$ (3)
$A-\mathrm{O}\left(1^{\prime \prime \prime}\right)$	$2 \cdot 30$ (1)	1.94 (1)	2.31 (1)	1.91 (3)
$A-\mathrm{O}\left(1^{\prime \prime}\right)$	$2 \cdot 28$ (1)	1.94 (1)	$2 \cdot 28$ (1)	1.93 (3)
$A-\mathrm{O}\left(1{ }^{\prime}\right)$	$2 \cdot 37$ (1)	1.96 (2)	2.41 (1)	1.99 (4)
$A-\mathrm{O}(1)$	$2 \cdot 55$ (1)	2.76 (2)	$2 \cdot 60$ (1)	2.71 (4)
$\mathrm{O}\left(1^{\prime \prime}\right)-\mathrm{O}\left(1^{\prime \prime \prime}\right)$	3.95 (1)	3.35 (1)	3.97 (1)	3.32 (3)
$\mathrm{O}(2)-\mathrm{O}\left(1^{\prime \prime}\right)$	4.00 (1)	3.38 (1)	4.00 (1)	$3 \cdot 38$ (2)
$\mathrm{O}(2)-\mathrm{O}\left(1^{\prime \prime \prime}\right)$	4.08 (1)	3.42 (1)	4.01 (1)	3.32 (3)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{O}\left(1^{\prime \prime \prime}\right)$	$3 \cdot 53$ (1)	$3 \cdot 12$ (1)	3.56 (1)	3.14 (3)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{O}\left(1^{\prime \prime}\right)$	$3 \cdot 52$ (1)	3.12(1)	3.52 (1)	$3 \cdot 16$ (3)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{O}(2)$	$3 \cdot 46$ (1)	3.14 (1)	3.40 (2)	$3 \cdot 30$ (3)

Table 1. Positional and thermal parameters $\left(\times 10^{4}\right)$ with standard deviations

	Anisotropic temperature factors have the form: $T=\exp \left[-\left(h^{2} \beta_{11}+k^{2} \beta_{22}+l^{2} \beta_{33}+2 h k \beta_{12}+2 h l \beta_{13}+2 k l \beta_{23}\right)\right]$.								
	x	y	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Si	0 (0)	1703 (4)	4912 (45)	13 (2)	46 (5)	17 (6)	0 (0)	0 (0)	-13(11)
Li	1737 (9)	3449 (18)	-24 (35)	34 (7)	52 (20)	117 (22)	21 (13)	24 (24)	-33(42)
$\mathrm{O}(1)$	1446 (4)	3077 (6)	4108 (9)	15 (3)	17 (10)	130 (14)	-10 (5)	5 (6)	-8(11)
$\mathrm{O}(2)$	0 (0)	1143 (9)	8461 (11)	34 (6)	25 (16)	68 (21)	0 (0)	0 (0)	-7 (14)

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

$\left[\mathrm{Si}-\mathrm{O}_{4}\right]$ tetrahedra				$\left\|\mathrm{Li}-\mathrm{O}_{4}\right\|$ tetrahedra			
$\mathrm{Si}-\mathrm{O}(1)$	1.592 (6) (2×)	$\mathrm{O}(1)-\mathrm{Si}-\mathrm{O}(2)$	108.4 (8) (2x)	$\mathrm{Li}-\mathrm{O}\left(1^{\prime}\right)$	1.955 (17)	$\mathrm{O}\left(1^{\prime \prime}\right)-\mathrm{O}\left(1^{\prime \prime \prime}\right)$	3.347 (5)
$\mathrm{Si}-\mathrm{O}(2)$	1.681 (21) (2x)	$\mathrm{O}(1)-\mathrm{Si}-\mathrm{O}\left(2^{\prime}\right)$	109.4 (7) (2x)	$\mathrm{Li}-\mathrm{O}\left(1^{\prime \prime}\right)$	1.938 (11)	$\mathrm{O}(2)-\mathrm{O}\left(1^{\prime \prime}\right)$	$3 \cdot 378$ (4)
$\mathrm{Si}-\mathrm{O}\left(2^{\prime}\right)$	$1.678(10)$	$\mathrm{O}(1)-\mathrm{Si}-\mathrm{O}\left(1^{\prime \prime \prime \prime}\right)$)117.1 (6)	$\mathrm{Li}-\mathrm{O}\left(1^{\prime \prime \prime}\right)$	1.937 (11)	$\mathrm{O}(2)-\mathrm{O}\left(1^{\prime \prime \prime}\right)$	$3 \cdot 416$ (6)
Average	1.636 (12)	$\mathrm{O}(2)-\mathrm{Si}-\mathrm{O}\left(2^{\prime}\right)$	103.4 (6)	$\mathrm{Li}-\mathrm{O}(2)$	$2 \cdot 170$ (11)	$\mathrm{O}\left(1^{\prime}\right)-\mathrm{O}\left(1^{\prime \prime \prime}\right)$	3.121(6)
$\mathrm{O}(1)-\mathrm{O}\left(1^{\prime \prime \prime \prime}\right)$	$2 \cdot 716$ (5)	Average	109.4 (3)	Average	$2 \cdot 000$ (7)	O(1')-O(1")	$3 \cdot 120(6)$ $3 \cdot 140(6)$
$\mathrm{O}(1)-\mathrm{O}(2)$	2.655 (6) (2x)					$\mathrm{O}\left(1^{\prime}\right)-\mathrm{O}(2)$	$3 \cdot 140(6)$ $3 \cdot 254(2)$
$\mathrm{O}(1)-\mathrm{O}\left(2^{\prime}\right)$	2.669 (5) (2x)			$\mathrm{Li}-\mathrm{O}(1)$	$2 \cdot 755$ (17)	Average	$3 \cdot 254$ (2)
$\mathrm{O}(2)-\mathrm{O}\left(2^{\prime}\right)$	$2 \cdot 637$ (7)	$\mathrm{Si}-\mathrm{O}-\mathrm{Si}$	124•1(7)				
Average	2.667 (3)						

Anisotropic refinement of the crystal structure converged at R (unweighted) $=0.066$ and R (weighted) $=$ 0.043 .* A list of positional and thermal parameters with estimated standard deviations is given in Table 1. Atomic distances and valence angles are shown in Tables 2 and 3.

Discussion. The structure given by Seemann (1955) with $R=26 \%$ has been confirmed and distinctly improved. $\left[\mathrm{SiO}_{4}\right]$ tetrahedra are corner linked to Zweierketten parallel to [001]. As in other silicates the $\mathrm{Si}-\mathrm{O}$ bonds to the bridging oxygen, $\mathrm{O}(2)$, are remarkably longer than those to the terminal oxygens, $\mathrm{O}(1)$, in accordance with the $d_{\pi}-p_{\pi}$ bond theory of Cruickshank (1961). The value $124 \cdot 1(7)^{\circ}$ for the $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ valence angle is rather low compared with the mean value, 137°, reported by Cameron, Sueno, Prewitt \& Papike (1973) for pyroxenes.

McDonald \& Cruickshank (1967) and Seemann (1955) respectively pointed out that in the isostructural $\left(\mathrm{Na}_{2} \mathrm{SiO}_{3}\right)_{x}$ the sodium ion occupies the approximate centre of a trigonal bipyramid while in $\left(\mathrm{Li}_{2} \mathrm{SiO}_{3}\right)_{\text {, }}$ the lithium ion has moved to one corner of the bipyramid, giving a $[4+1]$ coordination with $2 \cdot 02,2 \cdot 05,2 \cdot 11$, $2 \cdot 14$ and $2 \cdot 58 \AA$ as $\mathrm{Li}-\mathrm{O}$ distances. The values given in Table 3 reveal that the Li ions have moved even further into one half of the bipyramid, resulting in a normal tetrahedral $\left[\mathrm{LiO}_{4}\right]$ coordination. $\left(\mathrm{Li}_{2} \mathrm{SiO}_{3}\right)_{x}$ may be regarded as a framework of corner-linked $\left[\mathrm{LiO}_{4}\right]$ and $\left[\mathrm{SiO}_{4}\right]$ tetrahedra which is demonstrated by Fig. 1. As McDonald \& Cruickshank (1967) have pointed out,

[^0]

Fig. 1. Projection of $\left(\mathrm{Li}_{2} \mathrm{SiO}_{3}\right)_{x}$ along [010].
the topology of this framework is identical with that of wurtzite, the hexagonal polymorph of ZnS .

I thank Mrs E. Richert for supplying the crystals and Professor Dr F. Liebau for helpful discussions.

References

Cameron, M., Sueno, S., Prewitt, C. T. \& Papike. J. J. (1973). Amer. Min. 58, 594-618.

Cruickshank, D. W. J. (1961). J. Chem. Soc. pp. 54865504.

McDonald, W. S. \& Cruickshank, D. W. J. (1967). Acta Crust. 22, 37-43.
Midgley, H. C. (1951). Acta Cryst. 4, 565.
Seemann, H. (1955). Acta Cryst. 9, 251-252.
Stout, G. H. \& Jensen, L. H. (1968). X-ray Structure Determination. New York: Macmillan.
Völlenkle, H. \& Wittmann, A. (1968). Mh. Chem. 99, 244-250.
Völlenkle, H., Wittmann, A. \& Nowotny, H. (1971). Mh. Chem. 102, 964-970.

Acta Cryst. (1977). B33, 902-905

7-Chloromethylbenz[a]anthracene*

By David E. Zacharias
The Institute for Cancer Research, The Fox Chase Cancer Center, Philadelphia, PA 19111, USA

(Received 24 August 1976; accepted 1 November 1976)

Abstract. $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{Cl}$, monoclinic, $P 2_{1} / n, a=14.381$ (7), $b=4.228$ (2), $c=22 \cdot 141$ (7) $\AA, \beta=95.87^{\circ}(5), V=$ $1339(2) \AA^{3}, Z=4, D_{x}=1.370, D_{m}=1.367 \mathrm{~g} \mathrm{~cm}^{-3}$

[^1](by flotation in 1,1-dichloroethane-1,2-dibromoethane mixture), F.W. 276.77, $\lambda(\mathrm{Cu} \mathrm{K)}=1.5418 \AA, \mu(\mathrm{Cu}$ $K)=23.2 \mathrm{~cm}^{-1}$. The structure was solved by the direct phasing method and refined from 1717 diffractometer data $\left[I_{o} \geq 2 \cdot 33 \sigma(I)\right]$ to $R=0.063$, $w R=0.064$. The ring system is essentially planar with the maximum atomic deviation $\pm 0.05 \AA$. The Cl atom

[^0]: *A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32268 (3 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CHI INZ, England.

[^1]: * Preliminary details of this structure were presented at the Tenth International Congress, IUCr, Amsterdam, The Netherlands, August 1975.

